
CONFCNTLR: A VIDEOCONFERENCE CONTROLLER

A thesis submitted to the faculty of
San Francisco State University

in partial fulfillment of the
requirement for the

degree

Master of Science
in

Computer Science

by

Marcia Ann Perry

San Francisco, California

December, 1997

Copyright by
Marcia Ann Perry

1997

CERTIFICATION OF APPROVAL

I certify that I have read Confcntlr: A Videoconference Controller by Marcia

Ann Perry, and that in my opinion this work meets the criteria for approving

a thesis submitted in partial fulfillment of the requirements for the degree:

Master of Science in Computer Science at San Francisco State University.

 William Tsun-Yuk Hsu
 Associate Professor of Computer Science

 C. S. James Wong
 Associate Professor of Computer Science

 __
 Deborah A. Agarwal
 Staff Scientist, Lawrence Berkeley National Laboratory

CONFCNTLR: A VIDEOCONFERENCE CONTROLLER

Marcia Ann Perry
San Francisco State University

1997

Multicast over the Internet has inspired research into building virtual laboratories

and developing multimedia conference tools. The Spectro-Microscopy

Collaboratory, under development at Lawrence Berkeley National Laboratory and

the University of Wisconsin, Milwaukee, is a project aimed at making virtual

laboratories a reality. Confcntlr was developed for use in this collaboratory as a

conference controller to enhance the usability of the videoconference tools. It

allows local and remote control of the audio and video and provides an integrated

interface to the media tools. Confcntlr has changed the paradigm of

videoconferencing so that users do not have to be present at the transmitting

site. By presenting a unified interface, it facilitates the management of multiple

tools running concurrently. This thesis describes the design, development, and

implementation of confcntlr, and discusses recent work in videoconference tools,

control, and coordination.

I certify that the Abstract is a correct representation of the content of this thesis.

____________________________________ _______________________
William Tsun-Yuk Hsu Date
Associate Professor of Computer Science

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Deb Agarwal for her guidance and for having

provided me with the opportunity to design and develop this thesis. I would also

like to thank my thesis committee members, Dr. Bill Hsu and Dr. James Wong, for

their support and instruction. Much appreciation also goes to my fellow students

and co-workers at LBNL who are always willing to share information, especially

John Taylor who patiently answered my Frame questions.

This work is supported by the Director, Office of Energy Research, Office of Com-

putation and Technology Research, Mathematical, Information, and Computa-

tional Sciences Division, of the United States Department of Energy under

Contract No. DE-AC03-76SF00098 with the University of California.

TABLE OF CONTENTS

List of Figures . viii

List of Appendices . x

1 Introduction . 1
1.1 The Spectro-Microscopy Collaboratory . 2
1.2 The Conference Controller . 4
1.3 Thesis Organization . 5

2 Background . 6
2.1 Multicast Backbone (MBone) . 6
2.2 Media Tools . 7
2.3 Conference Management Tools . 13
2.4 Summary . 20

3 Software Architecture. 21
3.1 Requirements . 21

3.1.1 Design Requirements . 21
3.1.2 Functional Requirements . 23

3.2 System Overview . 25

4 Implementation. 28
4.1 The Control Unit. 29
4.2 The Network Unit . 31
4.3 The Encryption Unit . 32
4.4 The Graphical User Interface. 33

5 Algorithms . 39
5.1 Data Structures . 39
5.2 Sequences of Operations . 40

5.2.1 Local Operations . 41
5.2.2 Network Unit Algorithms . 43
5.2.3 Initiating Remote Operations . 45
5.2.4 Responding to Messages Received from the Network Component 47

5.3 Error Handling . 53
vi

6 Summary and Future Work . 55

References . 58

Appendices . 61
vii

LIST OF FIGURES

1 The primary vic user interface panel with an expanded view of the incoming video
feed shown below it . 11

2 Vic’s menu window reached by pressing "menu" on the vic panel 11

3 The vat user interface . 12

4 The wb user interface. 13

5 Sdr’s main window shows the currently advertised sessions 16

6 Sdr’s session information window . 16

7 Sdr’s session creation window. 17

8 The Conference Bus . 23

9 Confcntlr’s Components. 25

10 Communication Channels . 27

11 Confcntlr’s main window . 33

12 The Conference window . 35

13 Main window with pulldown menus . 35

14 Menu for setting remote vic and vat controls . 36

15 Advanced Audio WIndow. 36

16 The Security Window . 37

17 Prompt Panel to Approve a Remote Request for Setting Changes 38

18 Warning Panel for Notification of Changes Made by a Remote Host 38

19 Warning Panel to Display Denial of Setting Changes 38
viii

20 Warning Panel to Display Denial of Action. 38

21 Initialization . 41

22 Termination . 41

23 Starting vic and vat on Local Host . 42

24 Stopping vic and vat on Local Host . 42

25 Changing Local vic or vat Settings. 43

26 Sending a TCP Message . 44

27 Receiving a TCP Message. 45

28 Requesting a Remote Operation . 46

29 Processing a TCP Request . 48

30 Changing Parameter Values . 49

31 Starting vic or vat in Response to Remote Request 50

32 Changing vic or vat Settings in Response to Remote Request 51

33 Sending Local Settings . 52
ix

x

LIST OF APPENDICES

A Further Information . 61

B Confcntlr: User Manual . 62

Chapter 1

Introduction

Recent advances in network and computer technology have made it possible for

users at remote locations to actively participate in scientific research without trav-

eling to laboratories where the experiments are being conducted. It is possible to

receive data and observe analysis results, and to control the instruments and col-

laborate with other remote scientists within a distributed electronic environment.

In 1993, the National Research Council stated that

“The fusion of computers and electronic communications has the
potential to dramatically enhance the output and productivity of US
researchers. A major step toward realizing that potential can come
from combining the interests of the scientific community at large with
those of the computer science and engineering community to create
integrated, tool-oriented computing and communications systems to
support scientific collaboration. Such systems can be called ‘collab-
oratories’ ”[4].

Building virtual laboratories has become an active field in which emerging tech-

nology, work in distributed computing, and data management have been recently

applied to provide location-independent access to data, equipment, and collabo-

rators.
1

1.1 The Spectro-Microscopy Collaboratory

The United States Department of Energy has funded a series of four projects to

develop, implement, and integrate the technology required to make virtual labora-

tories a reality. These projects are called the “Distributed Collaboratory Experi-

ment Environments Program” (DCEE)[2].

One DCEE project is the Spectro-Microscopy Collaboratory, which is under

development at Lawrence Berkeley National Laboratory (LBNL) and the University

of Wisconsin, Milwaukee. This collaboratory provides researchers from large and

geographically distributed centers remote access to a synchrotron-radiation

beamline and to the analytical tools at LBNL’s Advanced Light Source (ALS). The

various components of the collaboratory allow remote equipment control, environ-

ment monitoring, data collection, a shared view of the data and results, and com-

munication between participants[1].

Videoconference tools are used to facilitate person-to-person interaction.

The videoconference tools utilized by the Spectro-Microscopy project researchers

are: vic for transmitting and receiving video images, vat for transmitting and

receiving audio signals, wb (whiteboard) for shared drawing and sending and

receiving slides, and sdr (session directory) for identifying and launching confer-

ences that are being broadcast. These tools have been built upon the IP multicast
2

capability, which provides efficient multi-point communication. Multicasting has

been implemented by building a virtual network on top of the Internet, which is

called the Multicast Backbone, or MBone[16]. (See Appendix A for pointers to

MBone tools and information.)

The vic and vat tools allow researchers at the ALS to start the video and

audio on the local computer and transmit the images and sound to either a unicast

or multicast address. Users at a remote site can receive the video and audio by

starting vic and vat on their local hosts. The sdr tool lists the conferences that are

broadcasting and allows users to select the conference and start vic and vat

locally from sdr windows.

While these tools represent a large technological advancement, they can

be enhanced further. Each one of them has a separate interface and none can be

controlled remotely. Users cannot use sdr to change the local vic or vat parame-

ters; they must manipulate controls on the vic or vat windows. Also, none of these

tools allows a user at one host to launch or stop the videoconference tools on

another host or to change the parameters on a remote site once a tool has been

started. For example, if the computer at the ALS is not running vic or vat, users at

the University of Wisconsin, Milwaukee cannot start a video or audio tool on the

ALS computer with vic, vat, or sdr. If the computer at the ALS is transmitting video

at a certain bandwidth and a frame rate, users in Milwaukee cannot change these
3

values nor can they turn remote video transmission on or off.

Inability to adjust video or audio parameters remotely can be frustrating to

the remote participant. Furthermore, because the video feed can take up a large

amount of bandwidth and potentially saturate the network, there are times when

the transmission rate and bandwidth should be reduced (e.g., when there are no

remote users watching the video). This currently requires a human operator at

the computer that is transmitting the video, which can be a burden to the

researchers who are conducting the experiments. The computer technology and

tools that allow remote participation in an experiment should not take a researcher

away from the experiment itself; nor should they require that researchers spend a

great deal of time managing the conference session.

1.2 The Conference Controller

Confcntlr was developed for use in the Spectro-Microscopy Collaboratory project

as a conference controller. It is a new MBone tool that works in conjunction with

other videoconference tools to enhance the usability of video and audio. It allows

local and remote control of the audio and video tools and provides a single inter-

face to vic and vat. Users at one site can start a video or audio session at another

site and can specify the parameter values. Once vic or vat is running, remote

users can change the video or audio settings without stopping and restarting the
4

tools and they can turn video transmission on or off without stopping and restart-

ing vic.

By providing remote control of video and audio tools, confcntlr has

changed the current paradigm of videoconferencing so that users do not have to

be present at each feed. By presenting a unified interface for these tools, it facili-

tates the management of multiple tools running concurrently. (See Appendix B for

the confcntlr user manual.)

1.3 Thesis Organization

This document describes the design, development, and implementation of con-

fcntlr, a conference controller which aims to further the collaboratory effort by

enhancing the usability of existing videoconference tools. The next chapter will

survey the multicast network infrastructure and discuss recent work in videocon-

ferencing. Chapter 3 will present the conference controller’s architecture. Chap-

ter 4 will discuss the design and implementation of confcntlr. The algorithms used

by confcntlr will be described in chapter 5. Chapter 6 will summarize the thesis,

identify further needs, and suggest additional features for confcntlr.
5

Chapter 2

Background

Recent research in the development of multicast-based multimedia conferencing

tools for the public domain has led to the development of media tools, conference

management tools, and conference control protocols. Since most of the tools

were built upon the MBone, the chapter begins with a description of IP multicast

and the MBone.

2.1 Multicast Backbone (MBone)

Unicasting provides point-to-point communication in which one host is specified

as the destination for network packets. Broadcasting allows transmission to multi-

ple destinations simultaneously and therefore has the potential to scale well to

large numbers of receivers. With broadcasting, all hosts on a network receive

copies of the packet being transmitted. With multicasting, IP datagrams are sent

to all hosts listening on a multicast group address. Each group has a unique IP

multicast (class D) address; a multicast group consists of hosts that want to get

packets with the specified class D address. These groups are dynamic; hosts

may join or leave a multicast group at any time[6].
6

The multicast backbone, or MBone, implements IP multicast. It is a new

technology which has not yet been fully deployed to all routers and hosts on the

Internet. When a host wants to join a multicast group, it issues a request to do so

and then receives packets transmitted to the specified multicast address. A host

can transmit packets to a multicast address without knowing which sites will

receive them; the receivers have the responsibility of joining the group. To limit

the scope of a multicast packet, a time-to-live (TTL) value is specified. The TTL is

decremented each time that it is received by a router. When the TTL is less than

the link threshold, the packet is not forwarded. By convention, a TTL between 1

and 16 would be used to keep packets within a single network while a TTL of 127

would be specified for global traffic.

2.2 Media Tools

Videoconferencing tools for sending and receiving media streams may be inde-

pendent, standalone applications, or they may be components that work together

within a multimedia conferencing system. Media include video, audio, and shared

workspaces on which conference participants may write or draw. This section will

discuss Net Video from Xerox PARC, IVS and Rendez-Vous from INRIA, and vic,

vat, and wb from Lawrence Berkeley National Laboratory. All of these tools are

based on a replicated architecture and all use the Real Time Protocol (RTP) on

top of IP Multicast. RTP contains a data delivery protocol to handle the actual
7

media transmission and a control protocol to manage information such as sender

identification and to provide time-stamping, packet sequencing, and receiver feed-

back.

Net Video, or nv, provides video-only conferencing and is one of the earli-

est MBone tools. It allows users to send and receive slow frame rate video as

point-to-point or multicast streams[25]. nv uses a software-based codec and a

custom coding scheme that has low computational complexity. Its graphical user

interface allows users to select a video stream from among those displayed, set

parameters, and view conference information. Video parameters include grabber

controls and transmit and receive options (e.g., size and color).

The INRIA Videoconferencing System (IVS) was developed at the same

time as nv. It transmits real-time audio and video over the MBone[25]. The audio

codecs are PCM and ADPCM. The video codec is a software implementation of

the H.261 standard which provides a video compression algorithm that can

achieve a very high compression rate. Thus, while its simpler encoding gives nv

better run-time performance, IVS uses less bandwidth. However, the H.261 stan-

dard was originally developed for the Integrated Services Digital Network (ISDN),

which can provide better quality of service (QoS) than the Internet because of its

guaranteed bandwidth. To maintain good QoS while minimizing bandwidth, IVS

implemented schemes to adapt the H.261 video compression algorithm to the
8

Internet environment. These schemes included packetization, error control, and

output rate control. The packetization scheme formats RTP and H.261 header

information and uses macroblock fragmentation of the payload. Since UDP pack-

ets may be lost or arrive out of sequence, an error control scheme was imple-

mented to mitigate against packet loss. In order to control network congestion,

IVS adapts its video output rate to network conditions. IVS allows users to call up

and talk to someone on the Internet. It also displays a list of participants and the

media they are using[24].

Rendez-Vous is under construction as the successor to IVS[15]. It pro-

vides video and audio within one application. It is described as an integrated

scheduler for media flow management and processing, which optimizes resources

to maximize the quality rendered to the user. The audio component is an integra-

tion of the FreePhone audio tool, recently developed at INRIA. The basic features

of Rendez-Vous include: support of RTP over multicast or unicast IP, the H.261

video standard, high-quality PCMU, ADPCM, UADPCM with HiFi support and low-

bandwidth GSM and LPC audio encoding. Advanced features include: flexibility

for inserting new protocols and coding schemes, multi-level audio redundancy for

bad network links, dynamic media rate control (i.e., adaptation to match the avail-

able bandwidth), support for layered coding and transmission of media flows, and

multiresolution wavelet and discrete cosine transform (DCT) codecs.
9

Vic, vat, and wb are separate but interoperable applications. Vic is a visual

tool; vat is an audio tool; and wb is a shared whiteboard. Vic and vat extend the

work of nv and IVS with a more flexible system architecture that supports hard-

ware-based codecs and a variety of compression algorithms, a model for confer-

ence coordination, and an extensible user interface. These tools implement a

software decoder for each supported compression format so that, if a sender uses

a hardware codec, all receivers can decode the stream. Vic and vat support a

variety of formats. Vic’s encoding scheme gives better compression performance

compared to nv and better runtime performance and packet-loss tolerance com-

pared to IVS. Vat has mechanisms to dynamically adapt itself to network delays,

supports several methods of avoiding feedback or echo from the microphone to

the speaker, and supports different modes of interaction (e.g., lecture mode in

which the speaker’s microphone is continuously open and “push-to-talk” in which

users push a button to open their microphone and release it when they are fin-

ished)[17]. More recently, vat has supported the use of a hardware echo cancel-

ler for hands-free operation.

Interprocess communication for application interoperability is achieved by

local multicasting through a communication channel termed the “Conference Bus.”

Each application that is connected to this channel can broadcast messages and

all processes that are connected to the channel get a copy of the message. Each

conference has its own conference bus to coordinate the media within that ses-
10

sion. For example, vic can focus on the current speaker using cues from vat and

floor control can be supported (e.g., a directive can be broadcast to let receivers

ignore the media from all participants except the one who holds the floor). There

is also a global conference bus for interaction among different sessions, such as

for access to shared video and audio devices.

The controls for vic and vat allow users to set a wide variety of parameters

and change them while the programs are running. Both tools keep track of and

display a list of participants and allow users to mute and unmute media sources.

Users can augment or change the behavior of these tools by writing their own

scripts which are evaluated by vic or vat. Figures 1 and 2 show vic’s user inter-

face and Figure 3 shows vat’s user interface.

Figure 1: The primary vic user interface
panel with an expanded view of the
incoming video feed shown below it.

Figure 2: Vic’s menu window reached by pressing
“menu” on the vic panel. The list of members is
shown to the right of the vic menu.
11

wb provides a shared whiteboard on which users may draw or write. When

a change is made, updates are made to all participants’ workspaces simulta-

neously. Since it can import PostScript files, wb can be used to send slides. Fig-

ure 4 shows wb’s user interface.

Figure 3: The vat user interface. The window on the right depicts the menu window.
12

2.3 Conference Management Tools

Conference control has included: session creation, announcement, and control;

application control; floor control; and resource management. Session creation

encompasses allocating addresses and specifying the information necessary to

start the conference with the correct initial state (e.g., session identifer and media

tools). Session announcement includes directory services to advertise availability

and methods of rendezvous. Session control entails managing participation (e.g.,

who is sending and receiving what media), authentication (e.g., session identifica-

tion, encryption keys), and presentation of coordinated user interfaces. Applica-

tion control refers to the ability to start and stop media applications and change

Figure 4: The wb user interface. The user information window is shown
on the left.
13

media-specific features locally or remotely. Floor control is the management of

media access (e.g., who can send audio or video and which streams can be

muted by receivers). Resource management includes conference scheduling

(i.e., booking systems) and the allocation and management of bandwidth to avoid

network congestion. At lower levels, conference control has included connection

control and protocol conversion to support different networks (e.g., ISDN and

packet networks)[9,13,20].

While some of the media tools discussed above provide some control func-

tions, external management tools have been developed as separate applications

or components of conferencing systems. The control tools presented below are:

the Multimedia Conference Control program (MMCC) from USC/ISI, the Session

Directory Tool (sdr) from MICE/ESPRIT, the Integrated Session Controller (ISC)

from FOKUS, and TelePort from LUTCHI.

MMCC was developed as a prototype session orchestration tool for point-

to-point and multipoint multmedia conferences[21]. Its main functions are to sup-

ply session creation and maintenance services and to manage the media. The

media tools are separate applications and include vat, nv, and wb. Built on a dis-

tributed, peer-to-peer model, MMCC is meant to execute continuously on a work-

station residing at each conference site. The media tools may be executed on a

separate machine. Conference participation is by invitation only.
14

To establish a conference, a user enters the required information and

invites other users to participate. MMCC allows a caller to explicitly invite others

to join a conference and alerts them to accept or decline. When a user creates a

session, MMCC assigns a conference address and identifier, spawns the selected

media tools with the specified configuration (e.g., device, bandwidth, and coding

algorithm) if it can be met, and alerts the callee to accept or decline the invitation.

An “autopilot” facility allows callees to automatically accept or decline invitations.

When a participant leaves the conference, MMCC tears down the media. MMCC

allows remote control of data rate and hardware devices (e.g., cameras, codecs,

and monitors). Although the actual data flow is left to the individual media compo-

nents, MMCC passes session and control information to them and to other

MMCCs. This information includes lists of participants and timing information for

inter-media synchronization. MMCCs use the Connection Control Protocol (CCP)

to communicate with each other. Multicasting of control information is via sequen-

tial unicast rather than via the MBone.

The sdr session directory is an MBone conference scheduling and booking

system. It has been described as an “Electronic TV Listings Guide” [5]. Events

are either broadcasts or interactive meetings, using a variety of media tools. Sdr

supports public and private sessions and performs the following basic tasks: lis-

tening for announcements and listing sessions; starting the relevant media tools;

creating sessions; and allowing users to make private “phone calls” to other users.
15

It utilizes the following protocols: Conference Control Channel Protocol (CCCP),

Session Description Protocol (SDP), Session Announcement Protocol (SAP), and

Session Initiation Protocol (SIP). Figure 5 shows the main window. When a user

clicks on a session title, a “Session Information Window” (shown in Figure 6)

appears to allow users to join a session, invite others to do so, or record media.

As shown in Figure 6, session information is displayed along with the tools

used in the conference. A user can start the tools singly or join the conference by

starting all of them. Additionally, users can access a web page by clicking on the

“More Information” button and they can view the names and locations of the ses-

sion creators by clicking on the “Contact Details” button. To set up a conference,

the creator must specify the information necessary to advertise and start the con-

ference. The standard tools supported are: vat and rat for audio, vic and nv for

video, wb for whiteboard, and nt for text. New media and new tools for existing

Figure 5: Sdr’s main window
shows the currently advertised
sessions.

Figure 6: Sdr’s session information window. The
tools and multicast addressing information is
listed along with a description of the session.
16

media may be defined. A session creation window is shown in Figure 7.

ISC is one component of the Multimedia Internet Terminal (MInT) confer-

encing system, which is currently under development[22]. ISC is a central confer-

ence controller that interoperates with the other components of the system,

namely, media agents and auxiliary controllers. The media agents include the

Network Video Terminal (NeViT) and vic for video and the Network Voice Terminal

(NeVoT) for audio. The media agents provide unicast and multicast sessions over

RTP/UDP/IP. Auxiliary controllers include the Session Invitation Terminal (SInT),

a reservation agent, and a floor controller. ISC provides an integrated graphical

user interface for the media and conference controls. While NeVoT has its own

Figure 7: Sdr’s session creation window.
This window is used to create a conference
session.
17

graphical user interface, NeViT does not; it is controlled through ISC.

ISC allows users to establish conferences and invite other users to partici-

pate. It also manages conference parameters and displays the participants and

their status (which media they are using and whether they are sending or receiv-

ing). To create a conference, users specify the media and their settings (e.g.,

encoding, maximum bandwidth, maximum frame rate, and quality) and the net-

work configuration (e.g., UDP or ATM and parameters such as burst length and

peak bandwidth). If the requested configuration is available, ISC starts the media

on the local host. ISC also supports bandwidth reservation using the reservation

agent as an interface to an RSVP daemon. To invite another user to participate in

the conference, the caller enters the email address of the callee. ISC forwards

this address to SInT which, through the use of daemons, verifies what host the

callee is logged onto and sends the invitation request. The remote ISC receives

the request, displays a panel used to accept or reject the invitation, starts the

media if the request is accepted, and sends a reply. During the conference, the

participants’ list can be used to enable or disable receiving media streams. Addi-

tionally, NeViT adapts its sending behavior to the congestion state of the network

(i.e., it reduces its sending rate when large losses are reported in the received

RTCP packets). ISC is used to turn this algorithm on or off and to set its parame-

ters. ISC also displays network traffic statistics such as bandwidth, loss, and jitter

values.
18

Communication between ISCs is via TCP connections. Communication

between components on the same host is via local multicast, if it is supported. If

local multicast is not supported, MInT uses a “message replicator,” which is a sep-

arate process that forwards control messages to controllers and media agents,

using the “pattern-matching multicast communication protocol” (PMM). The goal

in designing MInT was to obtain the benefits of both tightly-coupled and loosely-

coupled architectures. Since the media agents are separate applications, they

can be replaced, updated, and reused. ISC’s integrated user interface makes

these tools more manageable and the use of local multicast (or PMM) allows the

interoperability of the independent controllers and media agents. However, once

a media tool has been started, its settings cannot be changed by a remote site.

TelePort is under construction as a research vehicle for the study of issues

in the design of multimedia communication systems interfaces[3]. It interacts with

vic, vat, and wb, and can be launched from sdr. TelePort provides users with

awareness of what other participants in a group are doing--how busy they are,

whether they can be interrupted, who they are talking to, and whether they are

available for collaboration. It uses the metaphor of the office door to represent a

user’s availability. Users set options such as “working hard” and choose icons to

indicate whether their doors are open or closed. The main window displays these

options as well as the video and audio capability (e.g., “no speaker, no micro-

phone,” “no speaker, have microphone,” “have speaker, no microphone,” or “have
19

speaker, have microphone”). The availability state of remote users and a list of

participants are also displayed. Control packets are multicast according to an

experimental “Group Awareness Protocol” (GAP). Group members usually

belong to a work or project group and explicitly join a TelePort session. TelePort

emphasizes the use of social, rather than technological, methods of multimedia

session control. It builds upon current work in the development of “Media

Spaces.” It is described as a proof of concept prototype of the effectiveness of the

principles underlying the “Social Computer”--a system that allows users to apply

their knowledge of social protocols in deciding what they should do rather than

embedding social rules within the system.

2.4 Summary

Work in the multimedia conferencing area has been largely concerned with the

development of media tools and their infrastructures. Attention has been given to

improving the quality of service while minimizing bandwidth. It is only recently that

research has been devoted to conference control. Some efforts have emphasized

conference system architecture while others have emphasized usability or func-

tionality (e.g., session creation, announcement, and invitation). However, remote

control capabilities have been limited to starting tools on remote sites, not to

changing remote settings while a tool is executing. Users must operate the tools

at both the sending and receiving sites and thus divide their time between confer-

ence participation and manipulation of videoconference tools.
20

Chapter 3

Software Architecture

Confcntlr was built to control videoconference tools locally and remotely through

a unified interface. This chapter will define the conference controller’s require-

ments more specifically and explain its basic components. The implementation

will be explained in terms of the interoperability of these components in Chapter 4.

3.1 Requirements

The following sections delineate the features that must be included in the design

of the conference controller and the actions that it must perform.

3.1.1 Design Requirements

The major design requirements are a graphical user interface and a communica-

tion system. The communication system permits data exchange between con-

fcntlrs running on remote hosts and between confcntlr and videoconference tools

running on the same host. The graphical interface has to be intuitive to users and

unobtrusive. It is meant to replace the independent media interfaces or be used in

conjunction with them. Because the conference controller allows remote control

of other tools, security is also an important feature
21

Since remote control requires data exchange between conference control-

lers on different hosts, a reliable message-based mechanism is required for send-

ing and receiving requests and replies. In addition to communicating with other

hosts and processes, users must be able to manipulate controls in the graphical

user interface at all times. Therefore, confcntlr has to be nonblocking. Once a

message has been sent, the user should not be prevented from further operation

because confcntlr is waiting for a reply. To ensure that all sites could be consid-

ered equal, a peer-to-peer rather than client-server paradigm is required.

Vic, vat, and wb use the local multicast “conference bus” for coordination of

a videoconference session[17]. A design requirement for the conference control-

ler is to utilize the conference bus for communication with the other videoconfer-

ence tools. Because the hardware can support multiple video cards, one host

must be able to execute more than one video tool. It is also possible to execute

multiple audio tools. Therefore, the conference bus is shown in Figure 8 as a

communication channel between any number of video and audio tools.
22

3.1.2 Functional Requirements

The major functional requirements were to allow users to view and change param-

eters, carry out operations for local and remote control of video and audio, provide

security features, and display the system status. The parameters include the con-

ference name and address, time-to-live, and values specific to each medium (e.g.,

video bandwidth, frame rate, quality, device, compression format, and transmis-

sion).

The actions that must be supported are the following:

• start a specific video or audio tool on the local or remote host with user-
selected parameter values

• start all video and audio tools on the local or a remote host with user-
selected parameter values

• stop a video or audio tool running on the local or remote host
• obtain a remote host’s settings and find out which videoconference

tools are running on that host
• change parameter values for a video or audio tool that is already exe-

cuting
• turn video transmission off and on while the video tool is running

video 1confcntlr video n audio n

Figure 8: The Conference Bus. Confcntlr can exhange information with any
number of video and audio tools running on the same host.

audio 1
23

Since communication between conference controllers is over the public

Internet, confidentiality and integrity of data must be preserved. Thus, the confer-

ence controller must support encryption. Messages sent to a remote host can be

encrypted and messages received can then be decrypted, using an agreed upon

key that users can change. Also, users must be able to turn off encryption if they

wish. The conference controller has to detect whether data read from the network

has been encrypted or not.

To provide uninterrupted media and protect computer resources, the con-

ference controller should be able to restrict remote access to authorized users

and hosts. Local users should be able to restrict actions such as having the video

or audio turned on and off. Also, since exceedingly high bandwidths or frame

rates could saturate the network, users should be able to monitor or limit changes

in these values.

The required security features are:

• encryption/decryption of data exchanged between conference control-
lers at remote sites

• detection of whether data is or is not encrypted
• allowing users to change the encryption key
• allowing users to turn off encryption
• capability of restricting control of the conference controller to authorized

users and hosts
• capability for users to grant or deny permission for another host to

change values or perform an operation (unconditionally or on a per
change-request basis)

• ability to provide warnings when changes are made
24

3.2 System Overview

The conference controller was built to work with vic and vat. The conference con-

troller has four components that work together to provide the necessary function-

ality. These components are:

• graphical user interface
• control unit
• network unit
• encryption unit

The graphical user interface (GUI) receives user input and displays output.

The control unit contains the functions to set values or carry out actions. Although

not directly visible to the user, this is perhaps the locus of the main work of the

conference controller. Transparent to the user and at a lower layer is the network

unit that provides the mechanism for host-to-host and interprocess communica-

tion. It is invoked whenever messages need to be exchanged and, in turn, invokes

the encryption unit when these messages are transmitted or received over the

network. Figure 9 shows the relationships of the four components.

GUI

Control Unit

Encryption
UnitNetwork Unit

Figure 9: Confcntlr’s Components. The arrows indicate the
data flow.
25

All actions go through the control unit. When a user manipulates a control

in the graphical user interface, values are set or actions are carried out by func-

tions in the control unit. If a message is to be sent to a remote host or to a video-

conference tool on the same host, the control unit invokes the network unit. The

network unit invokes the encryption unit only when messages are sent to or

received from a remote host. When a message is received by the network unit

(from either a remote host or from the video or audio tools on the same host), the

control unit processes the message and the graphical user interface displays the

output.

The network component is responsible for establishing connections and

transmitting and receiving data over the communication channels to support host-

to-host and interprocess message exchange. Figure 10 depicts these communi-

cation channels.
26

Data transfer between conference controllers running on different hosts is

via the Transmission Control Protocol (TCP), which provides reliable, ordered, uni-

cast delivery[6]. The communication required to satisfy a request may be half-

duplex or full-duplex, depending upon whether a reply or acknowledgment is

required. Data transfer between applications running on the same host is via the

multicast conference bus local to the host.

Host A

vic vic vat confcntlr confcntlr vat vic vic

Host B

Conference Bus Conference Bus

TCP

Figure 10: Communication Channels. A TCP connection is for peer-to-
peer communication while the conference bus is used for interprocess
communication within a single host.
27

Chapter 4

Implementation

Confcntlr was implemented on SUN workstations running the Solaris 2.5.1 operat-

ing system and ported to Silicon Graphics workstations running the Irix 6.2 oper-

ating system. It was written to control vic and vat. Although one confcntlr controls

one conference session, multiple confcntlrs can be run to allow users to partici-

pate in multiple conferences. To obtain directory and booking services, confcntlr

can be launched from sdr. Confcntlr is a single-threaded application that does all

of its processing within an event loop. Host-to-host and interprocess communica-

tion were implemented with the socket interface[23].

The Data Encryption Standard (DES) was used for encryption[8]. The net-

work and encryption units and part of the control unit were written in the C pro-

gramming language. The graphical user interface and most of the control unit

were written in Tcl/Tk[18,26]. Tk is well-suited for creating windows for the X Win-

dow System, which is employed by Solaris. Tcl provides an interface to C that

makes it possible to write applications in a combination of C and Tcl/Tk. It also

provides an event loop and a simple way to do nonblocking, nonsequential I/O.

The implementation of each functional component will be discussed in the

following sections. The algorithms, presented in Chapter 5, will describe the way
28

confcntlr works and how these components operate together.

4.1 The Control Unit

The control unit carries out local operations invoked by the GUI or network unit.

These operations include starting and stopping vic and vat or changing the set-

tings for a tool that is executing on the local host. The control unit also formats

requests for and replies to operations on remote hosts.

When the GUI invokes the control unit to start (or stop) a tool on the local

host, the control unit spawns (or terminates) a process for the tool selected.

When a user changes a local vic or vat setting and the tool is running, the control

unit formats a message and invokes the network unit to transmit the message via

the conference bus. When a user initiates a remote operation, the control unit for-

mats a message and invokes the network component to establish a connection

and send the request.

If a message arrives from vic or vat on the conference bus, the control unit

updates its settings and invokes the GUI to display the new values or status. For

example, if the user clicks the “quit” button in the vic or vat window, a message is

broadcast on the conference bus. Confcntlr’s network unit forwards the message

to the control unit, which determines which tool sent the message, updates the
29

required values, and then invokes the GUI to display the new status. If a remote

host requested starting the tool, that host is sent a termination notice. If the user

changes a setting in the vic or vat window (e.g., video transmission or audio input

or output gain), a message is also broadcast to the conference bus and again

confcntlr’s network unit forwards the message to the control unit which updates

the appropriate parameter and invokes the GUI to update confcntlr’s display.

When the network unit receives a request, reply, or notification from

another confcntlr running on a remote machine, it forwards the message to the

control unit for identification and processing. Upon receiving a request, the con-

trol unit identifies the action and invokes security functions (e.g., checking the

authorization level and prompt options). It invokes the GUI to display prompt pan-

els when the user wants to manually set permissions. The requested action is

carried out only if permission is granted. The control unit formats a reply for every

request that it processes and forwards the reply to the network unit for transmis-

sion.

Upon receiving a reply or notification, the control unit updates values and

calls the GUI to update the display (e.g., remote settings were sent, a request was

denied, or a remote tool was terminated by its local user). If a request is denied,

the control unit invokes the GUI to create and display a warning panel.
30

4.2 The Network Unit

The network unit is responsible for opening and closing communication channels

and sending and receiving data. The sockets for sending and receiving mes-

sages over the conference bus and the socket on which the conference controller

listens for TCP connection requests are opened once and remain open for the

duration of the program. A separate TCP connection is opened and closed for

each remote operation. To allow the conference controller to function as a sender

or receiver at all times without blocking, a file handler is created when a socket is

opened. The file handler arranges for the appropriate procedure to be invoked

whenever data arrives on the socket.

The network component is responsible for host-to-host and interprocess

communication. There are two host-to-host communication schemes.

1. Host A sends a request to host B. Host A does not wait for a
 reply unless it is obtaining a remote host’s settings. Host B
 receives the request, processes it, and sends a reply.

2. Host A notifies host B that some event took place (e.g., host A
 terminated a process). Host B receives and processes the
 notification but does not send a reply.

Interprocess communication works as follows. Messages sent to other

applications running on the same host are broadcast via the conference bus.

Each application that is connected to this channel receives a copy of the message

and, if an application recognizes the message type, it processes the message
31

locally and may also forward that message to a conference controller at a remote

site. Acknowledgments and replies are not sent. Events that are broadcast are

the following:

• vic or vat was terminated and wants to notify the conference controller
• the conference controller wants to dynamically change a setting on vic

or vat
• vic or vat changed its setting and wants to notify the conference control-

ler

4.3 The Encryption Unit

Because encryption routines are not currently allowed to be exported from the

United States and confcntlr was to be placed on the World Wide Web, two ver-

sions of the conference controller were built, one that supports encryption and

one that does not. We’ll refer to these in this section as confcntlr-crypt and con-

fcntlr, respectively.

The encryption component of confcntlr-crypt invokes functions from the

SSLeay library to encrypt plain text and decrypt ciphertext, using the key provided

by the caller (the network unit). The encryption unit of confcntlr returns immedi-

ately if the encryption and decryption functions are called. With the exception of

the encryption component, both versions of the conference controller have the

same code. The different versions are built by compiling and linking with the

appropriate encryption components.
32

A conference controller that supports encryption is able to control a confer-

ence controller that does not, but the reverse does not hold. The encryption unit

tells the network unit whether or not the conference controller supports encryp-

tion. When the control unit processes a message, it queries the network unit

which, in turn, queries the encryption unit to determine if encryption is supported.

The encryption section in the security window of the user interface is not built if

encryption is not supported.

4.4 The Graphical User Interface

The graphical user interface (GUI) passes the input received from a local user to

the control unit and displays the output passed to it from the control unit. Since

minimizing screen real estate was important, confcntlr presents a small main win-

dow that displays the system status and controls for basic operations. Popup win-

dows can be opened for specific categories of functions (e.g., local or remote

settings, security features, general conference control). For user convenience,

menus with predefined values are utilized along with entry fields to allow users to

type their own values. The main window is shown below in Figure 11.

Figure 11: Confcntlr’s main window
33

In the upper portion of the main window are the version number, buttons for

displaying the tools running, and host addresses. The two columns of buttons

labeled “Status” indicate which vics and vats are running locally and remotely (the

left column in Figure 11 indicates that one vic and one vat are running on the local

machine while the right column indicates that both vics and one vat are running on

the remote host). The Contact Host displays the address of the machine with

which confcntlr is communicating and the Remote User displays the user who

most recently performed remote control. In the lower portion of the main window

are buttons to open the security, settings, and conference windows and to quit the

program. The image in the lower left corner displays the remote control access

level. On color monitors, the image displays red, yellow, and green, to correspond

to the authorization levels “allow no one,” “allow authorized users”, and “allow any-

one,” respectively.

The conference window, opened when the “Conference” button is clicked,

is shown in Figure 12. It displays the contact host, conference name, time-to-live

(TTL), conference address and port for each video and audio tool, and buttons for

starting and stopping local and remote tools or getting a remote host’s settings.

This window (and all subwindows) can be iconified with the “Dismiss” button. Val-

ues can be reverted to their defaults via the “Reset to Defaults” button.
34

The local and remote menus are opened via the “Settings” button’s pull-

down menu, shown in Figure 13. They contain the parameters for the video and

audio running on the local and remote hosts, respectively. The remote menu is

shown in Figure 14 (the local menu is the same).

Figure 12: The Conference Window

Figure 13: Main window with pulldown menus
35

Clicking on buttons labeled “Port...” or with an arrow open popup menus

with predefined values. Figure 14 shows two of these menus. Figure 15 shows

the “advanced audio window” that is opened by clicking on the “AdvAud” button.

Figure 14: Menu for setting remote vic and vat controls

Figure 15: Advanced Audio Window
36

The security window shown in Figure 16 displays the authorization levels,

options for prompt and warning panels, an editable authorization list, and an edit-

able encryption key. The prompt and warning panels may be used for setting per-

missions for remote control or notifying the user that an action has taken place. In

Figure 16, options are chosen to “prompt to approve setting changes” and “turn on

warnings.” With the latter option, the local user is notified whenever a change is

made by a remote user and she or he has not been prompted to manually

approve the change. Examples of panels displayed for each of these options are

shown in Figures 17 and 18. When a remote request is refused, a warning panel

like those in Figures 19 and 20 may be displayed.

Figure 16: The Security Window
37

Figure 20: Warning Panel to Display Denial of Action

Figure 17: Prompt Panel to Approve a Remote Request for Setting Changes

Figure 18: Warning Panel for Notification of Changes Made by a Remote Host

Figure 19: Warning Panel to Display Denial of Setting Changes
38

Chapter 5

Algorithms

This chapter describes the primary data structures of the software components,

explains the steps taken by confcntlr to carry out the actions invoked, and dis-

cusses how errors are handled.

5.1 Data Structures

The control unit’s primary data structures are C character arrays to store requests

and replies and Tcl arrays to store the parameter values. Each local and remote

vic and vat is allocated its own array with its parameters as indices. These param-

eters include bandwidth, pid, format, etc. For convenience, the algorithms will

refer to these arrays as “localtool” and “remotetool” to denote the tool being acted

upon (e.g., localvic1 or remotevic2).

The setting and displaying of parameter values are achieved as follows.

Controls in the graphical user interface are associated with Tcl variables. When a

widget’s value is changed, its associated variable is automatically updated and, if

the variable is assigned a value anywhere in the program, the widget displays the

new value. Thus, the GUI and the control unit share variables associated with

widgets.
39

The network component utilizes application-specific data structures for

storing messages. Since messages broadcast over the conference bus are

exchanged between confcntlr and vic or vat, confcntlr defines the same fields for

conference bus message structures as vic and vat, namely, a header and a char-

acter array for the data. The header includes integers to represent the message

type, a “magic” constant, and the process identification (pid) of the sender. The

character array will be referred to as the “text” field.

For messages transmitted over TCP connections, the network unit main-

tains a data structure with two fields: a “length” field and a character array to store

the actual data. The character array will be referred to as the “text” field. The

encryption unit maintains this same type of data structure.

5.2 Sequences of Operations

When the conference controller is launched, it initializes its components and

enters the event loop. Upon termination, it checks for settings changes and per-

forms cleanup before it exits. The pseudocode for initialization and termination

are shown in Figures 21 and 22, respectively.
40

The following sections describe the sequences of operations for performing

the actions invoked within the event loop. They will be presented in the following

order: the algorithms used by the control unit for local operations, the algorithms

used by the network unit for sending and receiving messages over the conference

bus and TCP connections, the algorithms used by the control unit for initiating

remote operations, and the algorithms used by the control unit for processing

messages received from the network unit.

5.2.1 Local Operations

Launch of the videoconference tools on the local host can be initiated by the GUI

or network unit. Upon receipt of a request to start all tools, each video and audio

tool is executed in sequence. When vic or vat is started, confcntlr writes a Tcl

script for that tool to set parameter values (which override vic or vat default val-

ues), define the types of conference bus messages vic or vat must recognize,

Init_App()
 establish signal handler;
 initialize Tcl/Tk;
 implement Tcl/Tk and C interface;
 set default values;

open TCP socket used for listening
 for connection requests;
 open multicast conference bus
 sockets for sending/receiving
 data;
 create main window;
 invoke Tcl/Tk event loop;

Terminate_App()
 if (setting changed)
 display “save panel”;
 write defaults file;
 endif
 close main TCP socket;
 close conference bus sockets;
 terminate each local vic/vat that
 is running;
 remove files created during
 execution;
 exit;

Figure 21: Initialization Figure 22 : Termination
41

define procedures to invoke upon receipt of these messages, and define any other

procedures to augment functionality. Confcntlr spawns vic and vat as child pro-

cesses with command line arguments for options such as the conference address

and name of the user-written Tcl script. Each unique process identifier (pid) is

stored in the array corresponding to the tool started. The algorithm used by the

control unit for starting one or more local tools (vic and vat) is given in Figure 23.

To stop one or more tools on the local host, the control unit retrieves the

process identifier for each tool that is being terminated and terminates that pro-

cess. If the tool has stopped at the request of a host other than the one that

requested its execution, a notification is sent to the host that started the tool

(referred to as the “launcher”). This algorithm is given in Figure 24.

Start_Local_Tool(tools)
 for each tool in tools do
 write Tcl script for tool;
 format command line arguments;
 execute tool;
 localtool(pid) := tool pid;
 endfor

Figure 23: Starting vic and vat on Local Host

Stop_Local_Tool(tools)
 for each tool in tools do
 kill localtool(pid);
 localtool(pid) := -1;
 if (launcher != local_host) then

send notification to launcher;
 endif
 endfor

Figure 24: Stopping vic and vat on Local Host
42

The algorithm for changing parameter values for vic or vat running locally

can be invoked by the GUI or the network unit. When values are changed in the

local menu and the tool is running, the control unit formats a message to vic or vat

and invokes the network unit to broadcast the message. When the target process

receives the message, it implements the change. The algorithm for dynamically

changing local vic and vat settings is given in Figure 25.

5.2.2 Network Unit Algorithms

To send a message over the conference bus, the network unit calls CB_Send,

which completes the fields of its message structure and broadcasts the message.

When the network unit is called to receive a conference bus message, it calls

CB_Receive. CB_Receive checks the process identifier (pid) in the header. If the

pid does not match confcntlr’s process identifer, the message may be from vic or

vat; the data is forwarded to the control unit for further processing.

The algorithm used by the network component to send a TCP message

assumes that its caller (the control unit) provides the socket descriptor, encryption

Change_Local_Settings(parameters, tool)
 if (localtool(pid) > 0) then

value := localtool(parameter);
format message;
CB_Send(message);

 endif

Figure 25: Changing Local vic or vat Settings
43

key, and message. Users can turn off encryption by entering an empty key. As

discussed in Section 4.3, there is one version of the conference controller that can

perform encryption and another version that cannot. Both versions have an

encryption component which contains a function (referred to as “crypt_on”) that

returns a value to indicate whether encryption is supported. If encryption is sup-

ported, the network unit calls the encryption unit to perform the encryption and

then writes the message to the TCP socket. The pseudocode for sending a TCP

message is given in Figure 26.

The algorithm for receiving a TCP message assumes that its caller (the

control unit) provides the socket descriptor, the encryption key, and buffers for

returning the message along with values indicating whether encryption is sup-

ported and whether the message was encrypted. The network unit reads the

length and then the message. If the length is a negative integer, the encryption

unit is called to decrypt the message. The network unit returns the plaintext mes-

sage and values that indicate whether encryption is supported and whether the

message was encrypted. If a conference controller that supports encryption

TCP_Send(socket, data, key)
 message.text := data;
 message.length := length of data;
 if (crypt_on() && key) then

encrypt(message.data, key);
message.length := message.length * -1;

 endif
 write message to TCP socket;

Figure 26: Sending a TCP Message
44

receives an unencrypted message, it returns an error code. The pseudocode for

receiving a TCP message is given in Figure 27.

5.2.3 Initiating Remote Operations

Remote operations include starting and stopping vic and vat on a remote

machine, changing parameter values of a tool running on a remote machine, and

obtaining another host’s settings. The network unit waits for a reply only if the

request is to get another host’s settings.

When users request a remote operation, the control unit formats a request

message and calls the network unit to open a TCP connection with the contact

host and send the message.

TCP_Receive(socket, key, data, crypt_support, encrypted)
 read message.length from socket;
 if (message.length < 0) then

message.length := message.length *-1;
encrypted := true;

 else
encrypted := false;

 endif
 crypt_support := crypt_on();
 if (!crypt_support &&encrypted) then

 data := “was encrypted”;
 return;

 endif
 read from socket message.length bytes into message.text;
 if (crypt_support && encrypted) then

 decrypt(message.text, key);
 endif
 data := message.text;
 return number of bytes read;

Figure 27: Receiving a TCP Message
45

The message types are:

• “start_tool” to start vic or vat (e.g., start_vic1)
• “start_all” to start both vics and vat
• “stop_tool” to stop vic or vat (e.g., stop_vic1)
• “stop_all” to stop all tools running
• “cb_tool” to change the settings on a tool that is running (e.g., cb_vic1)
• “get_params” to obtain a host’s settings.

The format of each message is: “message_type user@host arguments,”

where the arguments vary with respect to the message type. For example, the

arguments for a “start_tool” message list the parameter values of vic or vat. The

arguments for “stop_tool” and “stop_all” requests are the pids of the tools being

stopped. The arguments for a “cb_tool” request are a list of the parameters to

change and a list of their new values. There are no arguments for “get_params”

requests. (A “get_params” request is automatically sent to the specified contact

host when confcntlr is started and when the user changes the contact host.) The

algorithm for requesting a remote operation is given in Figure 28.

Remote_Operation(operation)
 format request for operation;
 if (operation != get_settings) then

open nonblocking TCP socket;
create file handler for socket;

 else
open blocking TCP socket;

 endif
 TCP_Send(socket, request, key);
 if (operation == get_settings) then

/* wait for a reply */
 endif

Figure 28: Requesting a Remote Operation
46

5.2.4 Responding to Messages Received from the Network Component

To read messages, the control unit invokes the network unit from either a file han-

dler or from a routine that is performing sequential I/O. Each message is pro-

cessed by a routine that is defined for its message type. In describing how the

conference controller handles the messages it receives, we will assume that, if the

message arrived on the conference bus, CB_Receive has been called.

A conference bus notification is in the format: “action pid arguments.”

For example, the message “changeParam 1234 transmit 0” means that process

number 1234 turned off transmission and the message “adios 1234” means that

process number 1234 was terminated. The control unit identifies the action and, if

it is recognized, it searches the arrays for local tools until it finds a matching pid

and makes the necessary updates.

To respond to a TCP request message, the control unit identifies the send-

ing host, checks whether the message is encrypted, and determines if encryption

is supported. If encryption is supported and the message is encrypted, additional

security checks are performed; otherwise, an error message is sent. If remote

control access is being granted, the next step is to parse the action and the argu-

ments from the request and call a subroutine to carry out the requested action.

When the subroutine returns, a reply is sent and the TCP connection is closed.
47

This algorithm, Process_TCP_Request, is shown in Figure 29, .

The subroutines called are: Do_Start for “start_tool” or “start_all” requests,

Do_Stop for “stop_tool” requests, To_Cb for “cb_tool” requests, and

Send_Settings for “params” requests. Do_Start and To_Cb use the same algo-

rithm to change settings, Do_Changes, given in Figure 30.

Process_TCP_Request(message, crypt_support, encrypted)
 if (message == “was encrypted” && !crypt_support) then

TCP_Send(“encryption not supported”);
close TCP connection;
return;

 endif
 check authorization;
 if (requestor is not authorized || remote control is disabled) then

TCP_Send(“operation not allowed”);
close TCP connection;
return;

 endif
 identify the action;
 if (crypt_support && !encrypted) then

TCP_Send(“not authorized”);
close TCP connection;
return;

 endif
 if ((action == “start_tool”) || (action == “start_all”)) then

identify the tool and requested values;
reply := Do_Start(tool, requested_values);

 else if (action == “stop_tool”) then
 identify the tool;

reply := Do_Stop(tool);
 else if (action == “cb_tool”) then
 identify the tool, parameters, and values;

reply := To_Cb(tool, parameters, values);
 else if (action == “params”) then

reply := Send_Settings();
 else

/* invalid request */
reply := error message;

 endif
 TCP_Send(reply);
 close TCP connection;

Figure 29: Processing a TCP Request
48

The arguments to Do_Changes() are the tool, a list of parameters to

change, and a list of requested values. The first step is to check the given lists to

make sure that the parameters are supported and that the requested values are

different from the current values. Next, default permissions are assigned to each

parameter to be changed. If a prompt option is set for a given type of parameter,

the GUI is invoked to display a dialog box so that the user can override the default

permission. Changes are made if the permission is “allow”. Do_Changes returns

a list of parameters not changed and a list of parameters that were changed

according to their default permissions along with their original values. The

Do_Changes(tool, parameters, new_values)
 foreach parameter in parameters do
 if (parameter is supported && new_value of parameter != localtool(parameter)) then
 add parameter and new_value to a list of changes;
 if (prompt option == “on” for this type of parameter) then
 add parameter and its new_value to lists for prompt panel;
 endif
 endif
 endfor
 if (there are items for a prompt panel) then
 display prompt panel;
 endif
 foreach parameter in list of changes do
 if (permit(parameter) == “allow”) then
 if (parameter is not on prompt panel list) then
 add parameter and its current value of parameter to lists for warning panel;
 endif
 localtool(parameter) := new_value of parameter;
 else
 add parameter to “rejects” list;
 endif
 endfor
 return “rejects” list and warning panel list;

Figure 30: Changing Parameter Values
49

“rejected” parameters are sent in the reply and the lists of changes made are used

for warning panels.

The Do_Start subroutine, shown in FIgure 31, obtains the permission value

for a “start” action and returns a “permission denied” message if the action is not

allowed. Otherwise, it continues by calling Do_Changes to set parameters to their

requested values and Start_Local_Tool to execute vic and/or vat. The routine

invokes the GUI to display necessary panels and updated values.

Do_Start(tool, new_values)
if ((“prompt to approve all actions”==true) && (“prompt to approve start/stop”==true)) then

 display prompt panel;
 else
 permit(start) := default permission value;
 endif
 if (permit(start) == “not allow”) then
 return “permission denied”;
 endif
 general_parameters := “version conference_name ttl”;
 Do_Changes(general_parameters, values for general_parameters);
 foreach tool do
 parameters := parameters applicable to tool;
 Do_Changes(parameters, new_values for parameters);
 concatenate prompt panel lists returned by Do_Changes;
 concatenate warning panel lists returned by Do_Changes;
 endfor
 Start_Local_Tool(tool);
 if ((list for warning panel != null) && (“turn on warnings”==true)) then
 display warning panel;
 endif
 reply := pid(s) of tool(s) started;
 concatenate “rejects” list(s) and append to reply;
 update display; /* configure labels on local ‘start’ buttons */;
 return reply;

Figure 31: Starting vic or vat in Reponse to Remote Request
50

To change the settings on vic or vat, Do_Changes is called with a parame-

ter list and requested values. If the change is made, the control unit formats a

conference bus message and invokes the network unit to send it. The GUI dis-

plays a warning panel if the change was made without a prompt panel. The

pseudcode is given in Figure 32, To_Cb.

To stop vic or vat, the Do_Stop subroutine calls Stop_Local_Tool, if the

action is permitted. It invokes the GUI when necessary to display a prompt panel

and update the status, and it returns a reply to Process_TCP_Request.

The Send_Settings subroutine lists the values of all the parameters on the

responding host as well as what tools are running and what video and audio

devices it has. It returns a concatenated list. Figure 33 shows the pseudocode.

To_Cb(tool, parameters, values)
 reply := Do_Changes(parameters, values);

/* if Do_Changes returns a null “rejects” list, the requested changes were approved*/
 if (“rejects” == null) then
 if ((“changed_parameters” list is not empty) && (“turn on warnings”==true) then

display warning panel;
 endif
 Change_Local_Settings(parameters, tool);
 endif
 update display;
 return reply;

Figure 32: Changing Vic or Vat Settings in Response to Remote Request
51

Since a reply to a request may not be received immediately after the

request was sent, the replies include the name of the sending host and the action

that was requested. The format of the reply depends upon its type. For example,

replies to “start” or “stop” requests include the pid(s) of the tools(s) being started

or stopped as well as a list of the tools running. The replies to “start” and “cb_tool”

requests list any parameters whose changes were rejected. The replies to

“get_params” requests include the values of all parameters, a list of tools running,

and lists of the video and audio devices on the sending host. If an action failed,

the reply contains an error code.

When the control unit receives a reply, it identifies the sender and action,

and then parses the remaining fields of the message. If the requested action was

not carried out (e.g., permission was denied or there was an error), the GUI dis-

plays a warning panel. If the contact host is the same as the sender, the control

unit updates the parameters of the remote tool with the values specified in the

reply and the GUI updates the display. If the contact host is not the same as the

Send_Settings()
 list general parameter values; /* version number, conference name, ttl */
 foreach tool do
 list parameter values;
 endfor
 list tools running on local host;
 list video and audio devices on local host;
 return concatenated list;

Figure 33: Sending Local Settings
52

sender, confcntlr does not overwrite any values (the current status applies to the

current contact host). When a reply to “get_params” is received, the controls for

the video and audio devices and audio thresholds are configured to reflect what is

supported on the remote host.

5.3 Error Handling

Confcntlr checks for system call and encryption failures and errors in user input.

Fatal errors include failures in creating the socket on which to listen for TCP con-

nection requests and failures to create the conference bus sockets. If these occur,

a message is written to standard error and the program exits. Nonfatal errors

include errors in creating sockets for sending requests, reading or writing sockets,

and encrypting or decrypting messages. If a nonfatal error occurs, confcntlr

writes a message to standard error, sends an error code in its reply, or displays a

notification panel, depending on the type of error. For example, TCP socket read

errors include reading less than “length” number of bytes or reading a request is

that is unrecognized. If the socket is open, its file handler is deleted and the

socket is closed. If the network unit cannot receive a conference bus message, it

writes a message to standard error. Processing is resumed with the next event

on the event queue.

When the network unit receives a TCP message, it sets a timeout value in

its TCP_Receive routine. The read blocks until either data is read or it reaches
53

the timeout value. When called from a file handler, TCP_Receive will not time out

since the routine is only called when there is data to be read. However, when

TCP_Receive is called from a routine that calls a read immediately following a

write (such as in getting another host’s settings), the read may time out. To

reduce this possibility, prompt panels will time out if the user does not respond

within a fixed amount of time.

 To reduce or avoid socket errors, the conference controller verifies the

name of the contact host input by the user. Whenever the control unit requests a

TCP connection, the network unit checks that the address of the remote host is

specified and that it is a valid unicast address. If the address is empty, unidenti-

fied, or multicast, a warning panel is displayed so that the user can edit the name

of the contact host and no socket calls are made.

If there is an encryption incompatibility (e.g., a conference controller that

does not support encryption receives an encrypted message or a conference con-

troller that supports encryption receives an unencrypted message), the receiver

writes a message to standard error and writes an unencrypted error code as a

reply. If the sending and receiving hosts support encryption but their keys do not

match, decryption fails and returns an error code to the network unit. The network

unit writes an error message to standard error and writes an encrypted error mes-

sage to the remote host (to force its decryption to fail).
54

Chapter 6

Summary and Future Work

The capability of multicast has inspired research into building virtual laboratories

and developing multimedia conference tools. Current efforts have focused on

video, audio, and shared workspace applications and their infrastructures. Con-

ference management has included conference announcement, creation, and invi-

tation, and resource management. The first two chapters presented an overview

of this research. However, most of the current management tools launch and for-

get media, and do not support remote setting changes for media that are execut-

ing.

This thesis described the design, development, and implementation of con-

fcntlr, a conference controller that enhances the management of the vic and vat

videoconference tools. It discussed the requirements and architecture, described

the design and implementation of the functional components, and presented the

algorithms used.

By allowing remote control of video and audio, confcntlr has changed the

way the videoconferencing tools are used. Users no longer need to be present at

all sites. Instead, the person who is watching the transmission and cares most

about how it is coming in can control the transmission. Also, by presenting a uni-
55

fied interface, confcntlr has made it easier to manage the separate media tools

that are running concurrently.

Confcntlr is now used as the primary interface to the videoconferencing

tools in the Spectro-Microscopy Collaboratory. It has greatly enhanced the usabil-

ity of the videoconference tools in the collaboratory. The researchers at the trans-

mitting site can spend more time on scientific experimentation since they no

longer have to manage the conference. The confcntlr source code and binaries

for selected architectures can be obtained from the pointers listed in Appendix A.

However, further enhancements to the conference controller’s usability can

be made. Since many conference participants may be PC users, confcntlr should

be ported to the Windows95 environment. Future work might include changing

the static support of two vics and one vat to a more dynamic design. For example,

a “create” feature can be used to allow users to specify the tools they want to

manage and the windows and variables could be configured accordingly.

Future work might also include incorporating the following features. It may

be helpful to add an email or “call up” facility by which users can hold private con-

versations. While confcntlr can be used for public sessions (since it can be

launched by sdr), conference participants may not know who else is running con-

fcntlr. Currently, participants can use the members’ lists in the vic and vat win-
56

dows to attempt to contact other hosts. Consideration should be given to

integrating the participants’ lists within the confcntlr’s graphical user interface and/

or having confcntlr announce itself on the MBone when it is started. Furthermore,

while notifications are queued for warning panels, it may be worthwhile to provide

an option to write notifications to a log file. Also, if a request is received while a

modal panel is displayed, the requesting host is sent a “busy signal.” If this occurs

too frequently, requests might be queued or a multithreaded approach might be

taken.
57

References

1. Agarwal, D., Johnston, W., Loken, S., and Tierney, B., “Tools for Building Vir-
tual Laboratories.” Proceedings of Computing in High Energy Physics, Rio de
Janeiro, Brazil (September 1995): 3-11.

2 Agarwal, D., Sachs, S., and Johnston, W., “The Reality of Collaboratories.”
Proceedings of Computing in High Energy Physics, Berlin, Germany (April
1997): Paper Number 329.

3 Anderson, B., “Providing Explicit Support for Social Constraints: In Search of
the Social Computer.” ACM CHI96 Online Proceedings: Doctoral Consortium,
Vancouver, British Columbia, Canada (April 1996); available from http://
www.acm.org/sigchi/chi96/Doctor-Consort; Internet; accessed 21 September
1997.

4 Cerf, V., Cameron, A., Lederberg, J., Russell, C., Schatz, B., Shames, P.,
Sproull, L., Weller, R., and Wulf, W., National Collaboratories: Applying Infor-
mation Technologies for Scientific Research, Washington, D. C.: National
Academy Press, 1993.

5 Clark, L., and Sasse, A., “Conceptual Design Reconsidered: The Case of the
Internet Session Directory Tool.” UCL Computer Science Research Note;
available from http://www-mice.cs.ucl.ac.uk/merci/publications.html; Internet;
accessed 23 September 1997.

6 Comer, D., Internetworking with TCP/IP: Principles, Protocols, and Architec-
ture, 2d ed., Volume I, New Jersey: Prentice-Hall, 1991.

7 Eriksson, H., “MBONE: The Multicast Backbone.” Communications of the ACM
(August 1994): 54-60.

8 Garfinkel, S., and Spafford, G., Practical UNIX and Internet Security, 2d ed.,
California: O’Reilly and Associates, 1996.

9 Handley, M., Kirstein, P., and Sasse, A., “Multimedia integrated conferencing
for European researchers (MICE): piloting activities and the conference man-
agement and multiplexing centre.” Computer Networks and ISDN Systems,
Volume 26 (November 1993): 275-290.

10 Handley, M., and Wakeman, I., “CCCP: Conference Control Channel Protocol:
A scalable base for building conference control applications.” Proceedings of
the ACM Conference SIGCOMM, NewYork: ACM Press, 1995.
58

11 Jacobson, V., and McCanne, S., VIdeoConference [version 2.8], Lawrence
Berkeley National Laboratory, Berkeley, California; available from http://www-
nrg.ee.lbl.gov/vic; Internet; accessed 6 June 1997.

12 Jacobson, V., and McCanne, S., Visual Audio Tool [version 4.0b2], Lawrence
Berkeley National Laboratory, Berkeley, California; available from http://www-
nrg.ee.lbl.gov/vat; Internet; accessed 6 June 1997.

13 Kirstein, P, Handley, M., Sasse, A., and Clayman, S., “Recent Activities in the
MICE Conferencing Project.” Proceedings of INET95, Internet Society, Hono-
lulu, Hawaii (June 27-30).

14 Kouzes, R., Myers, J., and Wulf, W., “Collaboratories: Doing Science on the
Internet.” Computer (August 1996): 40-46.

15 Lyonnet, F., “Rendez-Vous”, the next generation videoconferencing tool,
INRIA, France; available from http://www.inria.fr/rodeo/rv; Internet; accessed
23 September 1997.

16 Macedonia, M., and Brutzman, D., “MBone Provides Autio and Video Across
the Internet.” IEEE Computer Magazine (April 1994): 30-36.

17 McCanne, S., and Jacobson, V., “vic: A Flexible Framework for Packet Video.”
ACM Multimedia (November 1995): 1-19.

18 Ousterhout, J., Tcl and the Tk Toolkit, California: Addison-Wesley Publishing
Company, 1994.

19 Sasse, A., Bilting, U., Schulz, C., and Turletti, T., “Remote Seminars through
Multimedia Conferencing: Experiences from the MICE project.” Proceedings
of INET94, Internet Society (June 1994): 251/1 - 251/8.

20 Schooler, E., “Conferencing and collaborative computing.” ACM Multimedia
Systems Journal, Volume 4, Number 5 (October 1996): 210-225.

21 Schooler, E., “Cast Study: Mulimedia Conference Control in a Packet-switched
Teleconferencing System.” Journal of Internetworking: Research and Experi-
ence, Volume 4, Number 2 (June 1993): 99-120.

22 Schulzrinne, H., “Dynamic Configuration of Conferencing Applications using
Pattern-Matching Multicast.” 5th International Workshop on Network and
Operating System Support for Digital Audio and Video(April 1995): 231-242.
59

23 Stevens, W. R., UNIX Network Programming, New Jersey: Prentice-Hall PTR,
1990.

24 Turletti, T., “The INRIA Videoconferencing System (IVS).” ConneXions--The
Interoperability Report, Volume 8, Number 10 (October 1994): 20-24.

25 Turletti, T., and Huitema, C., “Videoconferencing on the Internet.” IEEE/ACM
Transactions on Networking, Volume 4, Number 3 (June 1996): 340-351.

26 Welch, B., Practical Programming in Tcl and Tk, New Jersey: Prentice-Hall
PTR, 1995.
60

Appendix A

 Further Information

The source code and binaries for confcntlr can be obtained at:
ftp://george.lbl.gov/pub/mbone/confcntlr

Information on how to use and obtain MBone tools is available at:
http://www-itg.lbl.gov/mbone

Information about the Spectro-Microscopy Collaboratory is available at:
http://www-itg.lbl.gov/BL7Collab

Explanations of how to interface with vic and vat via the conference bus and how
to build a Tcl/Tk program as a standalone C program are available at:

http://www-itg.lbl.gov/mbone/confcntlr
61

Appendix B

Confcntlr : User Manual

DESCRIPTION

Confcntlr is a conference controller which is intended to allow easier access to,
control of, and coordination of a videoconference between remote sites. It should
be run on all the machines participating in a videoconference session and used to
control vic and vat. Confcntlr is a graphical user interface and communication
tool. Through the graphical user interface, you can initiate actions and set the
local and remote video and audio parameters. After confcntlr is started, confcntlrs
running on remote hosts can communicate with it to start or stop the media tools
or to change settings for tools that are already running. Requests and replies
between confcntlrs are exchanged over the Internet. Messages between vic or
vat and confcntlr on the same host are sent via the local multicast “Conference
Bus.”

Confcntlr is meant to control only one videoconference. However, multiple con-
fcntlrs can be executed on one host. Each confcntlr running on the local host
must have a unique port on which it listens for connection requests from remote
confcntlrs. Confcntlrs running on different hosts and controlling the same confer-
ence must have the same port number. The conference controller must be
started before vic and vat and each confcntlr can launch two vics and one vat,
either locally or remotely. Security features provide access control and two ver-
sions of confcntlr are available: confcntlr-crypt (which supports encryption of
messages sent over the network) confcntlr (which does not perform encryption).

PLATFORM AND SYSTEM REQUIREMENTS

Confcntlr was developed on a SUN workstation and ported to SGI. The latest ver-
sion (beta V0.4) has been tested on Solaris 2.5.1 and Irix 6.2. The same hard-
ware and networking capabilities required for vic and vat are required for confcntlr.
(See http://www-itg.lbl.gov/mbone.)
62

COMPILATION

If you have the source code and Makefile for confcntlr (or confcntlr-crypt), make
sure that Tcl/Tk (v7.5/4.1) is installed on your system. Make sure that vic and vat
are also installed on your system. Then follow the steps below to compile the con-
ference controller.

To build confcntlr (nonencrypted version):

Edit the following lines in the Makefile so that you have the correct include
and library paths for Tcl/Tk:

INCLUDE_TK =
INCLUDE_TCL =
INCLUDE_X11 =
LIB_TCLTK =

Run “make confcntlr”.

To build confcntlr-crypt (encrypted version):

Make sure that the ssleay library (SSLeay-0.6.4) is also properly installed.
Edit the following lines in the Makefile so that the include and library paths
are correct for the Tcl/Tk and encryption (ssleay) libraries

INCLUDE_TK =
INCLUDE_TCL =
INCLUDE _X11 =
INCLUDE_CRYPT =
LIB_TCLTK =
LIB_CRYPTO =

Run “make confcntlr-crypt”. You might want to rename the binary to “con-
fcntlr”.

The binary will be created in the current working directory.

INSTALLATION

Install the binary in the desired directory (e.g., /usr/local/bin). Install the dot files
(.confcntlrrc and .ccauth) in your home directory. Install the sdr plugin (sdr2.plu-
gin.S50.control.tcp.*.confcntlr) in $HOME/.sdr/plugins. The plugin is necessary if
63

you want to create a conference session with sdr and have sdr launch confcntlr.
.confcntlrrc is the defaults file. It contains entries of parameters and values used
to override system defaults. .ccauth is an authorization list; its entries are users
who will be allowed remote access to the conference controller. Both files should
be edited so that their values are meaningful to your environment. The format of
entries for each file must be strictly adhered to.

In .confcntlrrc, you probably want to make the following changes:
Change the default contact host to a meaningful value in the line:

"hostaddr# warner.bros.edu"
Change the list of contact hosts in the line:

"hostlist# warner.bros.edu remote.machine.com"
Change the video devices to those that are available on your machine
in the line:

"deviceList# sunvideo sunvideo-1"
Change the video input jacks to those that are available on your machine in
the line:

"devportList# Composite-1 S-Video"
Change the list of audio input and output devices to those that are available
on your machine in the lines:

"audioInputDevices: mike linein"
"audioOutputDevices: speaker headphone linout"

Change the list of ports in the line:
"portlist# 12345 12347 12349"

Change the list of conference addresses in the line:
"addrlist# unicast 224.35.36.37"

Change the default value for conference addresses in the lines:
"localvic1.confaddr# unicast"
"localvic2.confaddr# unicast"
"localvat.confaddr# unicast"

 Change the default conference name in the line:
"confname# CONFERENCE"

 Change the default port numbers in the lines:
"localvic1.port# 12345"
"localvic2.port: 12347"
"localvat.port: 12349"

In .ccauth:
Change the list of users and hosts to those users and remote hosts that
have access control to your program. An asterisk can be used to mean
"all". The line "*@remote.machine.com" means "any host" at
remote.machine.com.
64

EXECUTION

SYNOPSIS
confcntlr [-f filename] [-p port]
confcntlr-crypt [-f filename] [-k key] [-p port]

OPTIONS
-f Use filename as defaults file. If filename is not found in the home

directory, system defaults are used and the current settings are
saved to this file upon termination. If not specified, the home
directory is searched for .confcntlrrc.

-k Use key as the encryption key for the encryption version of confcntlr.

-p Set the port on which confcntlr listens for connection requests from
remote confcntlrs. Specify port as an integer greater than 6000. If
not specified, the default 62525 is used.

OPERATION

Starting/stopping tools, changing settings, and communicating with remote hosts
are controlled via the windows. The main window shows the conference status
and has buttons for general control (e.g., quitting the program and bringing up the
windows for setting options, changing settings, and starting tools).

MAIN WINDOW

Remote Host Names

The entry field labeled "Contact Host" shows the name of the machine to connect
to. Use this field to type or edit the name of the remote site you want to communi-
cate with. Do not use the same name as the local host and do not use a multicast
address. To bring up a menu with predefined addresses, click on the button with
the arrow. If you press the return key in the entry field or click on a button and
confcntlr is running on that host, you will get that host's session status, settings,
and video/audio devices. You can change the list of host addresses or add new
addresses by editing the following line in the defaults file (e.g., $HOME/.confcntl-
rrc):
 hostlist# <address1> <address2> ... <addressN>.
The field labeled "Remote User" indicates the most recent user who started/
stopped a tool or changed the settings from a remote host. The format is:
user@hostname.
65

Status

The main window shows the authorization level and which tools are running. The
left column of buttons labeled "Status" indicates the tools running on the local
host and the right column indicates tools running remotely, in order of video 1,
video 2, and audio. A red button indicates that a tool is running. The stop sign
image indicates the authorization level. If it is green, control access to confcntlr is
granted to anyone. If it is yellow, control is allowed by hosts on the authorization
list in the home directory. If it is red, no one is allowed control access.

Subwindows

Click on the buttons labeled "Settings,” "Conference," and "Security" to bring up
the windows described below. At startup, if you specify a Contact Host and con-
fcntlr is running on that host, you will automatically get its settings.

Quitting Confcntlr

To quit the program, click on the button labeled "Quit". If changes were made,
you will be prompted about saving the changes.

LOCAL WINDOW

This window allows you to change the settings for video and audio tools running
on the local host. There is a section for each tool with the titles "vic 1", "vic 2",
and "vat" for video 1, video 2, and audio, respectively.

For video, a dialog box will appear if the bandwidth or frame rate is set to a value
that exceeds the recommended limit. If you still want to use this value, click on
the button labeled "USE ANYWAY." If you want to edit the value, type in the entry
field and then click "SET." If you want to go back to the default value, click on
"SET TO DEFAULT." If you want to use the previous value, click on "UNDO
CHANGE."

Conference Name Extension

The entry field labeled "ConfName Ext" is for specifying an optional extension to
the conference name for the video or audio. The characters "/", "#", and "@" are
not allowed since they are used by the program.
66

Video Transmission

To start or stop video transmission, click on the button labeled "Transmit Video".
A red checkbox indicates transmission is "on".

Video Settings

The bandwidth, frame rate, quality, and device may be changed via their pulldown
menus or typing in their entry fields and ending with the return key. The format
and input (Port...) can be changed only via their pulldown menus.

If you want the value you typed for quality to be kept as the quality associated
with the current format, press the return key after typing the entry.

Since different video formats support different quality ranges, changing the video
format will automatically change the range of values for the video quality. Cellb
does not support quality, so if cellb is the selected format, the quality menubutton
and entry field are disabled.

Audio Settings

The audio format can be changed by either typing in its entry field or clicking on
the button labeled with an arrow. Lecture mode, recv-only, and "keep audio" can
be turned on and off by clicking in their checkboxes. A red checkbox means "on."
Clicking on the "listen" and "talk" checkboxes mutes or unmute the output and
input devices; red means "unmuted". To change a device, click on the button
labeled with an arrow below the "talk" or "listen" checkbox. Then click on your
selection. The image to the left of the button displays the current device. You may
change the devices available by editing the list of values for "audioOutputDevices"
and "audioInputDevices" in the defaults file.

The sliders below the devices are for changing the gain levels. The selected out-
put mode applies to the current output device. External echo cancellation
("ExtEchoCancel") is available only if the "localvat.echoCancel" value is "true" in
the defaults file.

The bitmaps that indicate the current input/output devices were taken from the vat
source code.

Advanced Audio Settings

Clicking on the button labeled "AdvAud" will bring up a window with controls for
local audio tests. If your $HOME/.vat.tcl file contains a procedure for talk thresh-
67

old, echo threshold, and echo suppression time, sliders for setting these values
will also be displayed. (See SETTING DEFAULTS below and/or the mbone web
page at http://www-itg.lbl.gov/mbone for more information.)

Dynamic Changes

You do not need to stop and restart the video to change the following: transmis-
sion, bandwidth, frame rate, format, quality, device, and input jack. If you type in
an entry field, end with the return key.

You do not need to stop and restart the audio to change the following: output/
input device, output mode, output/input gain, or threshold levels. Lecture mode,
recv-only, "keepaudio," and muting/unmuting devices can be turned on and off
without stopping and restarting vat.

If you click the "quit" button in the vic or vat main window, or if you click vic's trans-
mit button, confcntlr will be sent a message and it will update its controls.

Reverting to Defaults

To go back to default values, click the button labeled "Reset to Defaults.” To hide
the window, click on the "Dismiss" button.

REMOTE WINDOW

This window is used to change the settings for video and audio tools on a remote
host. It works in the same way as the "local window."

When a remote host sends its settings (as in response to clicking on "Get Remote
Settings" or a change in Contact Host), the remote and conference windows dis-
play the values.

For vat, the external echo cancellation and threshold sliders are disabled and
grayed out if confcntlr hasn't obtained the contact host's settings or if the contact
host doesn't support these features.

CONFERENCE WINDOW

To specify a name for the conference, type in the entry field labeled "Conference
Name." The conference name is optional and can be the same or different for
each session. The characters "/", "#" and "@" may not be used since they have
special meaning to the program.
68

Conference Address, Port, and Time-to-Live

A conference address, port, and time-to-live value must be specified. Each tool
has its own conference address and port. The value specified for the video or
audio applies to both the local and remote tool. The conference address may be
the same or different for each tool, but the ports must be different. (You can run
sdr to get the conference address and port if they are unknown.)

To change the values, click on the button labeled with an arrow and then click on a
selection in the pulldown menu, or type in the entry field and end with the return
key.

The conference address is the address to which the video and audio tools trans-
mit. If "unicast" is specified and there is no "Contact Host", the local vic/vat will
transmit its video/audio to the local host. If there is a "Contact Host" and both
local and remote programs are started, they will transmit to each other. Otherwise,
transmission will be to the address specified.

Starting/Stopping Tools

To start/stop tools on the local host, click on the selected button in the column on
left side of the lower portion of this window. To start/stop tools on a remote host,
click on the selected button in the column on the right side of the lower portion of
this window.

When a local tool is started, the square turns red and the label changes to "stop"
to indicate that next action available is to stop the tool. When you start a remote
tool, a message is sent to the contact host and a reply is expected. The start but-
ton turns pink until the reply is received. This could be delayed if the network is
slow or if the remote user is manually setting control permissions (see SECURITY
WINDOW).

Clicking on a "Start All" button will start all three tools. The "Stop All" button will
stop all tools that are running.

Getting Remote Settings

To get a remote site's settings, type the contact host name and press the return
key, select a host from the menu, or click on the button labeled "Get Remote
Settings." The values in the remote window and the status buttons will be
updated. The video devices, video input ports (jacks), and the audio threshold
and external echo cancellation features will be enabled or disabled, depending on
what is supported by the contact host.
69

SECURITY WINDOW

This window contains controls for setting the authorization level, viewing/editing
the authorization list, selecting the prompts and warnings, and editing the encryp-
tion key if you are running the version that supports encryption.

Access Control

There are three authorization levels: allow any remote host to make a request,
allow only users on the authorization list to make requests, or do not allow anyone
to make a request. To change the authorization level, click on the desired
radiobutton. The stop sign image in the main window will change color accord-
ingly. The authorization list can be viewed or edited via the scrollbar text field.
When you quit confcntlr, if this list has been changed, a panel will appear to ask if
the changes should be saved to the $HOME/.ccauth file.

Setting Permissions for Actions

If you want to manually approve starting/stopping tools, click "on" the button
labeled "Prompt to approve start/stop". If you want to approve changes in confer-
ence address, port, time-to-live, or conference name, click "on" the button labeled
"Prompt to approve address/ttl/name changes." If you want to approve other
changes, click "on" the button labeled "Prompt to approve setting changes." If
you want to manually approve every request, click "on" the button labeled "Prompt
to approve all actions". If an action is denied, the requesting host will be notified.

When you are not prompted to set the permission for a request, a warning panel
will appear to notify you that the change has been made. If you do not want to
receive these warnings, click "on" the button labeled "Turn off warnings."

Encryption

If you are using encryption, all hosts participating in the conference must use the
same key. To turn off encryption, erase the key or use a blank space or tab as the
first character. You may change this key, but only after all participants have
agreed on the new key. The distribution of confcntlr from LBNL via the World
Wide Web does not support encryption due to U.S. export controls. In this case,
this section is missing in the security window.
70

SETTING DEFAULTS

When confcntlr starts, settings are read from the $HOME/.confcntlrrc file, or from
the defaults file in the home directory that is specified with the -f option. If there
is no defaults file, the program supplies the values and displays a notification
panel. When you quit the program, if values are different from those at startup, a
panel will appear to ask whether you want to save the changes. Click on the but-
ton labeled "Save Settings" to update the defaults file if it exists or create one if it
does not exist.

In order to associate a quality value with a specific format for the video, the
numeric value can be edited in the $HOME/.confcntlrrc file in the following lines:
 *vic.jpeg# xxx
 *vic.h261# xxx
 vic.nv# xxx

WARNING: If the format of the defaults file is not held to strictly, the entry will not
be read! The list of users with access control is kept in the $HOME/.ccauth file. If
you change this list in the security window, when you quit the program, you will be
asked if you want to save the changes to this file. If the file does not exist, it will be
created.

As described in the vic and vat documentation, both of these tools allow user cus-
tomization by specifying tcl commands in a $HOME/.vic.tcl (or $HOME/.vat.tcl) file
and in a script that can be specified with the "-u" command line option. Although it
is not required, a "user_hook" procedure can be included in these files. When
confcntlr starts a session, it writes a script with a user_hook procedure and starts
the video and audio with the "-u" option. Since this script is executed AFTER the
$HOME/.vic.tcl (or $HOME/.vat.tcl) scripts, the user_hook procedures in the
$HOME/.vic.tcl and $HOME/.vat.tcl files will be overridden. To have them exe-
cute, rename "proc user_hook" to "proc confcntlr_hook" in the $HOME/.vic.tcl
and $HOME/.vat.tcl files.

If there is a user_hook procedure but no confcntlr_hook procedure in a $HOME/
.vic.tcl or $HOME/.vat.tcl file, you will get a warning panel one time only, the first
time a session is started.

SESSION DIRECTORY SERVICES

sdr will launch confcntlr if you have the appropriate plugin (available from http://
www-itg.lbl.gov/mbone/confcntlr).
71

	TABLE OF CONTENTS
	1 Introduction 1
	1.1 The Spectro-Microscopy Collaboratory 2
	1.2 The Conference Controller 4
	1.3 Thesis Organization 5
	2 Background 6
	2.1 Multicast Backbone (MBone) 6
	2.2 Media Tools 7
	2.3 Conference Management Tools 13
	2.4 Summary 20
	3 Software Architecture 21
	3.1 Requirements 21
	3.1.1 Design Requirements 21
	3.1.2 Functional Requirements 23

	3.2 System Overview 25
	4 Implementation 28
	4.1 The Control Unit 29
	4.2 The Network Unit 31
	4.3 The Encryption Unit 32
	4.4 The Graphical User Interface 33
	5 Algorithms 39
	5.1 Data Structures 39
	5.2 Sequences of Operations 40
	5.2.1 Local Operations 41
	5.2.2 Network Unit Algorithms 43
	5.2.3 Initiating Remote Operations 45
	5.2.4 Responding to Messages Received from the Network Component 47

	5.3 Error Handling 53
	6 Summary and Future Work 55

	LIST OF FIGURES
	1 The primary vic user interface panel with an expanded view of the incoming video feed shown bel...
	2 Vic’s menu window reached by pressing "menu" on the vic panel 11
	3 The vat user interface 12
	4 The wb user interface 13
	5 Sdr’s main window shows the currently advertised sessions 16
	6 Sdr’s session information window 16
	7 Sdr’s session creation window 17
	8 The Conference Bus 23
	9 Confcntlr’s Components 25
	10 Communication Channels 27
	11 Confcntlr’s main window 33
	12 The Conference window 35
	13 Main window with pulldown menus 35
	14 Menu for setting remote vic and vat controls 36
	15 Advanced Audio WIndow 36
	16 The Security Window 37
	17 Prompt Panel to Approve a Remote Request for Setting Changes 38
	18 Warning Panel for Notification of Changes Made by a Remote Host 38
	19 Warning Panel to Display Denial of Setting Changes 38
	20 Warning Panel to Display Denial of Action 38
	21 Initialization 41
	22 Termination 41
	23 Starting vic and vat on Local Host 42
	24 Stopping vic and vat on Local Host 42
	25 Changing Local vic or vat Settings 43
	26 Sending a TCP Message 44
	27 Receiving a TCP Message 45
	28 Requesting a Remote Operation 46
	29 Processing a TCP Request 48
	30 Changing Parameter Values 49
	31 Starting vic or vat in Response to Remote Request 50
	32 Changing vic or vat Settings in Response to Remote Request 51
	33 Sending Local Settings 52

	LIST OF APPENDICES
	A Further Information 61
	B Confcntlr: User Manual 62

	Chapter 1
	Introduction
	1.1 The Spectro-Microscopy Collaboratory
	1.2 The Conference Controller
	1.3 Thesis Organization

	Chapter 2
	Background
	2.1 Multicast Backbone (MBone)
	2.2 Media Tools
	2.3 Conference Management Tools
	2.4 Summary

	Chapter 3
	Software Architecture
	3.1 Requirements
	3.1.1 Design Requirements
	3.1.2 Functional Requirements

	3.2 System Overview

	Chapter 4
	Implementation
	4.1 The Control Unit
	4.2 The Network Unit
	4.3 The Encryption Unit
	4.4 The Graphical User Interface

	Chapter 5
	Algorithms
	5.1 Data Structures
	5.2 Sequences of Operations
	5.2.1 Local Operations
	5.2.2 Network Unit Algorithms
	5.2.3 Initiating Remote Operations
	5.2.4 Responding to Messages Received from the Network Component

	5.3 Error Handling

	Chapter 6
	Summary and Future Work
	References
	1. Agarwal, D., Johnston, W., Loken, S., and Tierney, B., “Tools for Building Virtual Laboratorie...
	2 Agarwal, D., Sachs, S., and Johnston, W., “The Reality of Collaboratories.” Proceedings of Comp...
	3 Anderson, B., “Providing Explicit Support for Social Constraints: In Search of the Social Compu...
	4 Cerf, V., Cameron, A., Lederberg, J., Russell, C., Schatz, B., Shames, P., Sproull, L., Weller,...
	5 Clark, L., and Sasse, A., “Conceptual Design Reconsidered: The Case of the Internet Session Dir...
	6 Comer, D., Internetworking with TCP/IP: Principles, Protocols, and Architecture, 2d ed., Volume...
	7 Eriksson, H., “MBONE: The Multicast Backbone.” Communications of the ACM (August 1994): 54-60.
	8 Garfinkel, S., and Spafford, G., Practical UNIX and Internet Security, 2d ed., California: O’Re...
	9 Handley, M., Kirstein, P., and Sasse, A., “Multimedia integrated conferencing for European rese...
	10 Handley, M., and Wakeman, I., “CCCP: Conference Control Channel Protocol: A scalable base for ...
	11 Jacobson, V., and McCanne, S., VIdeoConference [version 2.8], Lawrence Berkeley National Labor...
	12 Jacobson, V., and McCanne, S., Visual Audio Tool [version 4.0b2], Lawrence Berkeley National L...
	13 Kirstein, P, Handley, M., Sasse, A., and Clayman, S., “Recent Activities in the MICE Conferenc...
	14 Kouzes, R., Myers, J., and Wulf, W., “Collaboratories: Doing Science on the Internet.” Compute...
	15 Lyonnet, F., “Rendez-Vous”, the next generation videoconferencing tool, INRIA, France; availab...
	16 Macedonia, M., and Brutzman, D., “MBone Provides Autio and Video Across the Internet.” IEEE Co...
	17 McCanne, S., and Jacobson, V., “vic: A Flexible Framework for Packet Video.” ACM Multimedia (N...
	18 Ousterhout, J., Tcl and the Tk Toolkit, California: Addison-Wesley Publishing Company, 1994.
	19 Sasse, A., Bilting, U., Schulz, C., and Turletti, T., “Remote Seminars through Multimedia Conf...
	20 Schooler, E., “Conferencing and collaborative computing.” ACM Multimedia Systems Journal, Volu...
	21 Schooler, E., “Cast Study: Mulimedia Conference Control in a Packet-switched Teleconferencing ...
	22 Schulzrinne, H., “Dynamic Configuration of Conferencing Applications using Pattern-Matching Mu...
	23 Stevens, W. R., UNIX Network Programming, New Jersey: Prentice-Hall PTR, 1990.
	24 Turletti, T., “The INRIA Videoconferencing System (IVS).” ConneXions--The Interoperability Rep...
	25 Turletti, T., and Huitema, C., “Videoconferencing on the Internet.” IEEE/ACM Transactions on N...
	26 Welch, B., Practical Programming in Tcl and Tk, New Jersey: Prentice-Hall PTR, 1995.

	Appendix A
	Further Information
	Appendix B
	Confcntlr: User Manual
	DESCRIPTION
	PLATFORM AND SYSTEM REQUIREMENTS
	COMPILATION
	INSTALLATION
	EXECUTION
	OPERATION

